Akdeniz Eğitim Araştırmaları Dergisi
Abbreviation: MJER | ISSN (Print): 1309-0682 | DOI: 10.29329/mjer

Orjinal Araştırma Makalesi | Akdeniz Eğitim Araştırmaları Dergisi 2020, Cil. 14(34) 1-44

STEM Anlayışının ve Görselleştirilmesinin Zeka Alanlarıyla İlişkisinde Proje Tabanlı Öğretime Dayanan STEM Yaklaşımının (STEM PTÖ) Rolü

Mustafa Çevik & Zeynel Azkın

ss. 1 - 44   |  DOI: https://doi.org/10.29329/mjer.2020.322.1

Yayın tarihi: Aralık 25, 2020  |   Okunma Sayısı: 38  |  İndirilme Sayısı: 67


Özet

Bu araştırmanın amacı Proje Tabanlı Öğretime Dayanan STEM (STEM PTÖ) yaklaşımının ortaokul öğrencilerinin STEM anlayışları ile görselleştirmelerinde öne çıkan zeka alanlarıyla ilişkisine etkisini incelemektir. Bu kapsamda STEM PTÖ yaklaşımıyla öğrencilerin akademik başarılarına etkisi tespit edilmiş bu etki ile öne çıkan zeka alanları arasındaki korelasyon ortaya konulmuştur.  Araştırma karma modellerden biri olan açımlayıcı desene göre tasarlanmıştır. Araştırmanın nicel boyutunda ön test son test kontrol gruplu yarı deneysel desen, nitel boyutunda ise durum çalışması deseni gerçekleştirilmiştir. Araştırmaya 58 öğrenci katılmıştır. Uygulama 5. Sınıf fen bilimleri dersinde 12 hafta boyunca yürütülmüştür. Deney grubu 30 ve kontrol grubu 28  kişiden oluşmuştur. Araştırmanın sonunda STEM PTÖ yaklaşımının öğrencilerin akademik başarılarında yüksek düzeyde son test lehine bir etkiye sahip olduğu tespit edilmiştir. Ve bu başarı ile öğrencilerin zeka alanları arasındaki korelasyon ortaya konulmuştur. Uygulama sonrasında deney grubu öğrencileriyle yapılan görüşmelerde öğrencilerin daha çok mühendislik ve tasarım, fen, eğlence/oyun, matematik, teknolojik aletler ve duygu kavramlarını merkeze aldıkları çizimler ile STEM’i anlatmaya çalışmışlardır. Bu temalar ile öne çıkan zeka alanları arasındaki ilişkiye de bakılarak bir bağıntı ortaya ortaya konmuştur.

Anahtar Kelimeler: Proje Tabanlı STEM, STEM Anlayışı, STEM Görselleştirme, Zeka Alanları


Bu makaleye nasıl atıf yapılır?

APA 6th edition
Cevik, M. & Azkin, Z. (2020). STEM Anlayışının ve Görselleştirilmesinin Zeka Alanlarıyla İlişkisinde Proje Tabanlı Öğretime Dayanan STEM Yaklaşımının (STEM PTÖ) Rolü . Akdeniz Eğitim Araştırmaları Dergisi, 14(34), 1-44. doi: 10.29329/mjer.2020.322.1

Harvard
Cevik, M. and Azkin, Z. (2020). STEM Anlayışının ve Görselleştirilmesinin Zeka Alanlarıyla İlişkisinde Proje Tabanlı Öğretime Dayanan STEM Yaklaşımının (STEM PTÖ) Rolü . Akdeniz Eğitim Araştırmaları Dergisi, 14(34), pp. 1-44.

Chicago 16th edition
Cevik, Mustafa and Zeynel Azkin (2020). "STEM Anlayışının ve Görselleştirilmesinin Zeka Alanlarıyla İlişkisinde Proje Tabanlı Öğretime Dayanan STEM Yaklaşımının (STEM PTÖ) Rolü ". Akdeniz Eğitim Araştırmaları Dergisi 14 (34):1-44. doi:10.29329/mjer.2020.322.1.

Kaynakça
  1. Akamca, G. Ö. (2003). İlköğretim beşinci sınıf fen bilgisi dersi ısı ve ısının maddedeki yolculuğu ünitesinde çoklu zeka kuramı tabanlı öğretimin öğrenci başarısı, tutumu ve hatırda tutma üzerindeki etkileri (Unpublished master thesis), Dokuz Eylül University, Institute of Educational Sciences, İzmir. [Google Scholar]
  2. Akgündüz, D., Aydeniz, M., Çakmakçı, G., Çavaş, B., Corlu, M. S., Öner, T., &. Özdemir, S. (2015). STEM eğitimi Türkiye raporu: Günün modası mı yoksa gereksinim mi?. İstanbul, Turkey: Aydın Üniversitesi. Retrieved from http://www.aydin.edu.tr/belgeler/IAU-STEM-Egitimi-Turkiye-Raporu-2015.pdf [Google Scholar]
  3. Amir, N. (2014). Showcasing the creative talents in science of the academically less-inclined students through a values-driven toy story-telling project. In: Lennex LC, Nettleton KF (eds) Cases on Instructional Technology in Gifted and Talented Education. IGI Global Publishing, USA, pp 141–179. [Google Scholar]
  4. Amir N., & Subramaniam R. (2007). Making a fun cartesian diver: a simple project to engage kinaesthetic learners. Physics Education, 42(5), 478–480. [Google Scholar]
  5. Amir N., & Subramaniam, R. (2014). Presenting physics content and fostering creativity in physics among less academically inclined students through a simple designbased toy project. In: de Silva E (ed) Cases on Research-Based Teaching Methods in Science Education. IGI Global Publishing, USA, pp 157–196. [Google Scholar]
  6. Anderson, T. R., Schonborn, K. J., du Plessis L., Gupthar A. S., & Hull. T. L. (2013). Identifying and developing students ability to reason with concepts and representations in biology. In: Multiple representations in biological education. Springer, Netherlands, pp 19–38. [Google Scholar]
  7. Armstrong, T. (1994). Multiple intelligence in the classroom. Alexandria,VA: Association for Supervision and Curriculum Development. [Google Scholar]
  8. Ayar, M. C., & Yalvac, B. (2016). Lesson learned: Authenticity, interdisciplinarity, and mentoring for STEM learning environments. International Journal of Education in Mathematics, Science and Technology, 4(1), 30-43. DOI:10.18404/ijemst.78411. [Google Scholar]
  9. Baran, M., & Maskan, A. (2010). The effect of project-based learning on pre-service physics teachers’electrostatic achievements. Cypriot Journal of Educational Sciences, 5, 243-257. [Google Scholar]
  10. Belardo, C. M. A. (2015). STEM Integration with Art: A Renewed Reason for STEAM.  Doctoral Projects, Masters Plan B, and Related Works. [Google Scholar]
  11. Barrett, B. S, Moran, A. L., & Woods, J. E. (2014). Meteorology meets engineering: an interdisciplinary STEM module for middle and early secondary school students. International Journal of STEM Education, 1(6), 2-7. [Google Scholar]
  12. Barroso, R.L, Bicer, A., Capraro, M. M., Capraro, R. M., Foran, A. L., Grant, M. R., Lincoln, Y. S., Nite, S. B., Öner, A. T., & Rice, D. (2017). Run! Spot. Run!: Vocabulary development and the evolution of STEM disciplinary language for secondary teachers. ZDM Mathematics Education, 49,187–201. [Google Scholar]
  13. Baş, G., & Beyhan, Ö. (2010). Effects of multiple intelligences supported project-based learning on students’ achievement levels and attitudes towards English lesson. International Electronic Journal of Elementary Education. 2(3), 365-385. [Google Scholar]
  14. Bicer, A., Capraro, R. M., & Capraro, M. M. (2017). Hispanic students’ mathematics achievement in the context of their high school types as STEM and non-STEM schools. International Journal of Mathematical Education in Science and Technology, 49(5), 705-720. DOI: 10.1080/0020739X.2017.1410735. [Google Scholar]
  15. Bicer, A., Boedeker, P., Capraro, R. M., & Capraro, M. M. (2015). The effects of STEM-PBL on students’ mathematical and scientific vocabulary knowledge. International Journal of Contemporary Educational Research, 2(2), 69-75. [Google Scholar]
  16. Bicer, A., Navruz, B., Capraro, R. M., & Capraro, M. M. (2014). STEM schools vs. non-STEM schools: Comparing students’ mathematics state based test performance. International Journal of Global Education, 3(3), 8-18. [Google Scholar]
  17. Bicer, A., Navruz, B., Capraro, R. M., Capraro, M. M., Oner, T. A., & Boedeker, P. (2015). STEM schools vs. non-STEM schools: Comparing students' mathematics growth rate on high-stakes test performance. International Journal of New Trends in Education and Their Implications, 6(1), 138-150. [Google Scholar]
  18. Black, S. (1994). Different kinds of smart. The Executive Educator, 16(1), 24–27. [Google Scholar]
  19. Breiner, J. M., Harkness, S. S., Johnson, C. C., & Koehler, C. M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112(1), 3–11. [Google Scholar]
  20. Brown, R., Brown, J., Reardon, K., & Merrill, C. (2011). Understanding STEM: Current perceptions. Technology and Engineering Teacher, 70(6), 5-9. [Google Scholar]
  21. Brualdi, A. (1996). Multiple intelligences: Gardner’s theory. ERIC. ED410226. [Google Scholar]
  22. Bümen, N. (2002). Okulda çoklu zeka kuramı.Ankara: Pegem. [Google Scholar]
  23. Bümen, N. (2005). Çoklu zeka kuramı ve eğitimi (Ed. Ö. Demirel). Eğitimde Yeni Yönelimler. Ankara: Pegem A Yayıncılık. [Google Scholar]
  24. Büyüköztürk, Ş. (2008). Sosyal bilimler için veri analizi el kitabı. Ankara: Pegem A Yayıncılık. [Google Scholar]
  25. Büyüköztürk, Ş. (2011). Deneysel desenler. 3. Baskı. Ankara: Pegem Yayınları. [Google Scholar]
  26. Büyüköztürk, Ş., Çakmak, E. K., Akgün, Ö. E., Karadeniz, Ş., Demirel, F. (2014). Bilimsel araştırma yöntemleri. Pegem Akademi: Ankara. [Google Scholar]
  27. Bybee, R. (2000). Teaching science as inquiry. In J. Minstrel & E. H. Van Zee (Eds.), Inquiring into inquiry learning and teaching in science (pp. 20-46). Wasington, DC: American Association for the Advancement of Science (AAAS). [Google Scholar]
  28. Bybee, R. (2013). The case of STEM education: challenges and opportunities. NSTA Press, Arlington. [Google Scholar]
  29. Capraro, R. M., Capraro, M. M., & Morgan, J. R. (2013). STEM Project-Based Learning An Integrated Science, Technology, Engineering, and Mathematics (STEM) Approach. Second Edition. Sense Publishers, Rotterdam. [Google Scholar]
  30. Capraro, M. M., & Nite, S. B. (2014). STEM integration in mathematics standards. Middle Grades Research Journal, 9(3), 1-10. [Google Scholar]
  31. Capraro, R. M., & Slough, S. W. (2009). Project Based Learning, An İntegrated Science, Technology, Engineering and Mathematics (STEM) Approach. Rotterdam/Taipei: Sense Publishers. [Google Scholar]
  32. Chang, S. H.,  Ku, A. C.,  Yu, L. C., Wu, T. C., & Kuo, B. C. (2015). A science, technology, engineering and mathematics course with compute r-assisted remedial learning system support for vocational high school students. Journal of Baltic Science Education, 5(14), 641-654. [Google Scholar]
  33. Craft, A. M., & Capraro, R M. (2017). Science, technology, engineering, and mathematics project-based learning: merging rigor and relevance to ıncrease student engagement. Electronic International Journal of Education, Arts, and Science, 3(6), 140-158. [Google Scholar]
  34. Claymier, B. (2014). Integrating STEM into the elementary curriculum. Children's Technology & Engineering, 18(3), 5. [Google Scholar]
  35. Cohen, J. (1988). Statistical Power Analysis For The Behavioral Sciences. Hillsdale, NJ: Erlbaum. [Google Scholar]
  36. Connors-Kellgren, A., Parker, C. E., Blustein, D. L., & Barnett, M. (2016). Innovations and Challenges in Project-Based STEM Education: Lessons from ITEST. Journal of Science Education and Technology, 25(6), p825-832. [Google Scholar]
  37. Cook, M. P. (2006). Visual representations in science education: the influence of prior knowledge and cognitive load theory on instructional design principles. Science Education, 90(6), 1073–1091. [Google Scholar]
  38. Creswell, J. W. (2012). Research design: Qualitative, quantitative, and mixed methods approaches (4th ed.). Thousand Oaks, CA: Sage. [Google Scholar]
  39. Creswell, J. W., & Plano Clark, V. L. (2014). Karma yöntem araştırmaları: Tasarımı ve yürütülmesi [Mixed method research: Design and execution]. (Y. Dede, S. B. Demir, Dü, & A. Delice, Çev.) Ankara, Türkiye: Anı Yayıncılık [Google Scholar]
  40. Çevik, M. (2017).  Content analysis of Stem-focused education research in Turkey. Journal of Turkish Science Education (TUSED), 14(2), 12-26.. [Google Scholar]
  41. Çinkılıç, İ., & Soyer, F. (2013). An investigation the relation between multiple inteligence areas of pre-service physical education teacher and their problem solving skills. Spor Yönetimi ve Bilgi Teknolojileri. 8(1), 4-16. [Google Scholar]
  42. Daempfle, P. A. (2013). Good science, bad science, pseudoscience, and just plain bunk: How to tell the difference. 1st. Ed.Rowman & Littlefield Publishers. MD. [Google Scholar]
  43. Demirel, Ö. (2002), Kuramdan uygulamaya eğitimde program geliştirme. Ankara: Pegem A Yayıncılık. [Google Scholar]
  44. Dillivan, K. D., & Dillivan, M. N. (2014). Student ınterest in stem disciplines: results from a summer day camp. The Journal of Extension (JOE), 52(1), 1-11. [Google Scholar]
  45. Dominguez, C., & Jaime, A. (2010). Database design learning: A project-based approach organized through a course management system. Computers & Education, 55(3), 1312–1320. [Google Scholar]
  46. Dugger, E. W. (2010). Evolution of STEM in the United States. 6th Biennial International Conference on Technology Education Research. Australia. from received http://www.iteea.org/Resources/PressRoom/AustraliaPaper.pdf on 20 Mart 2013. [Google Scholar]
  47. Egarievwe, S. U. (2015).Vertical education enhancement – a model for enhancing STEM education and research. Procedia - Social and Behavioral Sciences, 177, 336 – 344. [Google Scholar]
  48. Ercan, S. (2014). Fen eğitiminde mühendislik uygulamalarının kullanımı: Tasarım temelli fen eğitimi. (Unpublished doctoral dissertation), Marmara University, Institute of Educational Sciences, İstanbul. [Google Scholar]
  49. Erdoğan, N., & Stuessy, C. (2015). Examining the role of inclusive STEM schools in the college and career readiness of students in the united states: A multi-group analysis on the outcome of student achievement. Educational Sciences: Theory & Practice. 15(6), 1517-1529. [Google Scholar]
  50. Fisher, H. (2015). How to STEM: Science, technology, engineering and math education in libraries, The Australian Library Journal, 64(3), 242-242, DOI: 10.1080/00049670.2015.1048564. [Google Scholar]
  51. Gallant, D. (2011). Science, technology, engineering, and mathematics (STEM) education. 16 October 2017 was accessed from adress: https://www.mheonline.com/mhmymath/pdf/stem_education.pdf. [Google Scholar]
  52. Ganesh, T. G. (2011). Analyzing subject-produced drawings: The use of the draw-an-engineer assessment in context. From recevied https://www.researchgate.net/public ation/266867189  adress, 10 December 2017. [Google Scholar]
  53. Ganesh T., Thieken J., Elser M., Baker, D., Krause, S., Roberts, C., Kurpius-Robinson, S., Middleton, J., & Golden, J. (2009). Eliciting underserved middle-school youths’ notions of engineers: Draw an engineer. Paper presented at American Society of Engineering Education Annual Conference & Exposition; Austin, TX. From received https://peer.asee.org/5796 adress on 09 October 2017 [Google Scholar]
  54. Gardner, H. (1993). Frames of mind: the theory of multiple ıntelligences, Basic Books, New York. [Google Scholar]
  55. Gardner, H. (1997). Multiple intelligences as a partner in school improvement. Educational Leadership, 55(1), 20-21. [Google Scholar]
  56. Gardner, H. (1999). Intelligence Reframed: Multiple Intelligences for the 21st Century. New York, NY: Basic Books. [Google Scholar]
  57. Gomleksiz, M. N., & Fidan, E. K. (2012). Web tasarımı dersinde proje tabanlı öğrenme yönteminin kullanılmasına ilişkin öğrenci görüşlerinin değerlendirilmesi. Fırat Üniversitesi Sosyal Bilimler Dergisi, 22(1), 101-116. [Google Scholar]
  58. Gömleksiz, M., & Fidan, E. (2013). Proje tabanlı öğrenme yönteminin web tasarımı dersinde kullanılmasına ilişkin nitel bir çalışma. Mersin Üniversitesi Eğitim Fakültesi Dergisi, 9 (1), 120-135. Retrieved from http://dergipark.gov.tr/mersinefd/issue/17382/181559. [Google Scholar]
  59. Gürbüz, R. (2011). Positive and negative reflections of maths teaching carried out in learning environment designed based on multiple intelligence theory. International Online Journal of Educational Sciences, 3(3), 1195-1223. [Google Scholar]
  60. Hall, A., & Miro, D. (2016), A Study of student engagement in project-based learning across multiple approaches to STEM education programs. School Science and Mathematics, 116, 310–319. doi:10.1111/ssm.12182. [Google Scholar] [Crossref] 
  61. Han, S. (2017). Korean students’ attitudes toward STEM project-based learning and major selection. Educatıonal Scıences: Theory & Practıce, 17(2), 529–548. DOI 10.12738/estp.2017.2.0264. [Google Scholar]
  62. Han, S., Capraro, R., & Capraro, M. M. (2015). How science, technology, engineering, and mathematics (stem) project-based learning (pbl) affects high, middle, and low achievers differently: the ımpact of student factors on achievement. International Journal of Science and Mathematics Education, 13(5), 1089-1113. [Google Scholar]
  63. Honey, M., Pearson, G., & Schweingruber, H. (Eds.) (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. National Academy of Engineering and National Research Council. Washington DC: National Academies Press. [Google Scholar]
  64. Işık, D. (2007). Çoklu Zeka Kuramı Destekli Kubaşık Öğrenme Yönteminin İlköğretim 3. Sınıf Öğrencilerinin Matematik Dersindeki Akademik Başarılarına Etkisi. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi (Kefad), 8(1), 63-77. [Google Scholar]
  65. Hartzler, D. S. (2000). A meta-analysis of studies conducted on integrated curriculum programs and their effects on student achievement. Doctoral dissertation. Indiana University. [Google Scholar]
  66. Shaughnessy, J. J., Zechmeister, E. B., & Zechmeister, J. S. (2016). Research methods in psychology.( Tenth Edition) Mc Graw-Hill Education, New York. [Google Scholar]
  67. Johnson, C. C. (2013) Conceptualizing integrated STEM education. School Science and Mathematics, 113(8), 367–368 Kaldi, S., Filippatou, D. & Govaris, C. (2011). Project-based learning in primary schools: Effects on pupils’ learning and attitudes. Education, 3–13, 39(1), 35–47. [Google Scholar]
  68. Kangas, M. (2010) Creative and playful learning: learning through game co-creation and games in a playful learning environment. Think Skills Creativity, 5(1), 1–15. [Google Scholar]
  69. Karasar, N. (2007). Bilimsel araştırma yöntemi. Ankara: Nobel Yayın Dağıtım. [Google Scholar]
  70. Kearney, S. K., & Hyle, E. A. (2004). Drawing out emotions: the use of participant produced drawings in qualitative inquiry. Qualitative Research, 4(3), 361-382. [Google Scholar]
  71. Kline, P. (2000). The Handbook of Psychological Testing (2nd Edition). London and Newyork: Routledge. [Google Scholar]
  72. Kozhevnikov M, Motes, M. A., & Hegarty, M. (2007). Spatial visualization in physics problem solving. Cogn Sci.  8;31(4):549-79. Doi: 10.1080/15326900701399897. [Google Scholar]
  73. Kuloğlu, S. (2005). Çoklu zeka kuramının ilköğretim sekizinci sınıflarda matematik öğretiminde öğrenci başarısına etkisi. (Unpublished masters thesis), Balıkesir University,  Institute of Sciences, Balıkesir. [Google Scholar]
  74. Liao, C. (2016). From interdisciplinary to transdisciplinary: an artsintegrated approach to STEAM Education, Art Education, 69(6), 44-49. [Google Scholar]
  75. Lou, S. J., Chou, Y. C.,  Shih, Y. C., & Chung , C. C. (2017). A Study of Creativity in CaC2 steamship-derived STEM Project-based learning. EURASIA Journal of Mathematics, Science and Technology Education 13(6), 2387–2404.  [Google Scholar]
  76. Lou, S. J.,  Tsai, H. Y., Tseng, K. H., &  Shih, R. C. (2014). Effects of ımplementing stem-ı project-based learning activities for female high school students. International Journal of Distance Education Technologies, 12(1), 52-73. [Google Scholar]
  77. Lyons, J., & Thompson, S. (2005). A study examining change in underrepresented student views of engineering as a result of working with engineers in the elementary classroom. Paper presented at 2005 Annual Conference, Portland, Oregon. From received https://peer.asee.org/14995 adress on 11 December 2017. [Google Scholar]
  78. Madden, M. E., Baxtera, M.,  Beauchampa, H., Boucharda, K., Habermasa, D., Huffa, M., Ladda, B., Pearona, J., & Plaguea, G. (2013) . Rethinking STEM education: An interdisciplinary STEAM curriculum. Procedia Computer Science, 20, 541 – 546. [Google Scholar]
  79. Mayer, R. E., Bove, W., Bryman, A., Mars, R., & Tapangco, L. (1996). When less is more: meaningful learning from visual and verbal summaries of science textbook lessons. Journal of Educational Psychology, 88(1),64. [Google Scholar]
  80. McKillup, S. (2012). Statistics explained: An introductory guide for life scientists (Second edition). United States: Cambridge University Press. [Google Scholar]
  81. Melanlıoğlu, D. (2015). Ortaokul öğrencilerinin Türkçe dersi algılarına yönelik yaptıkları çizimler. Okuma Yazma Eğitimi Araştırmaları, 3(1), 27-38. [Google Scholar]
  82. Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis (2nd edition). Thousand Oaks, CA: Sage. [Google Scholar]
  83. Morrison, J. A. (1999). Investigating teachers’ understanding and diagnosis of students’ preconceptions in the secondary science classroom. Retrieved from Oregon State University Library. http://hdl.handle.net/1957/33374 [Google Scholar]
  84. Morrison, J. (2006). STEM education monograph series, Attributes of STEM education. Baltimore, MD: TIES. [Google Scholar]
  85. National Academy of Engineering [NAE]. (2010). Standards for K-12 engineering education. Washington, DC: National Academies Press. [Google Scholar]
  86. National Research Council [NRC]. (2012). A Framework for k-12 science education: practices, crosscutting concepts, and core ideas. Washington DC: The National Academic Press. [Google Scholar]
  87. Öner, A. T., Capraro, R. M., & Capraro, M. M. (2016). The effect of T-STEM designation on charter schools: A longitudinal examination of students’ mathematics achievement. Sakarya University Journal of Education. 6(2), 80-96. [Google Scholar]
  88. Öner, A. T., Nite, S. B., Capraro, R. M., & Capraro, M. M. (2016). From STEM to STEAM: students’ beliefs about the use of their creativity, The STEAM Journal, 2(2), 1-16. DOI: 10.5642/steam.20160202.06  [Google Scholar]
  89. Pallant, J. (2005). Using graphs to describe and explore the data (Ch. 7). In SPSS Survival Manual (2nd ed.). Sydney: Allen & Unwin. [Google Scholar]
  90. Pallant, J. (2007). SPSS survival manual: A step-by-step guide to data analysis using SPSS for Windows. Philadelphia, PA: Open University Press. [Google Scholar]
  91. Peeck, J. (1993). Increasing picture effects in learning from illustrated text. Learning and Instruction, 3(3), 227–238. [Google Scholar]
  92. Rabitoy, E. R., Hoffman, J. L., & Person, D. R. (2015). Supplemental ınstruction: the effect of demographic and academic preparation variables on community college student academic achievement in stem-related fields. Journal of Hispanic Higher Education, 14(3), 240-255. [Google Scholar]
  93. Radloff, J., & Guzey, S. (2016). Investigating preservice stem teacher conceptions of STEM education. Journal of Science Education and Technology, 25, 759–774. DOI 10.1007/s10956-016-9633-5 [Google Scholar]
  94. Rochford, K. (1985). Spatial learning disabilities and underachievement among university anatomy  students.  Medical Education, 13-26.  [Google Scholar]
  95. Roberts, A. (2012). A justification for STEM education. The Technology and Engineering Teacher Online. 1-5. Retrieved from http://www.iteeaconnect.org. on 02 December 2018. [Google Scholar]
  96. Robinson, A., Dailey, D., & Cotabish, G. A. (2014). The effects of a science-focused STEM intervention on gifted elementary students’ science knowledge and skills. Journal of Advanced Academics, 25(3),189 – 213. [Google Scholar]
  97. Root-Bernstein, R. (2015). Arts and crafts as adjuncts to STEM education to foster creativity in gifted and talented students. Asia Pacific Education Review, 16(2), 203-212. [Google Scholar]
  98. Roth, W. M., Bowen, G. M., & McGinn, M. K. (1999). Differences in graphrelated practices between high school biology textbooks and scientific ecology journals. Journal of Research in Science Teaching,  36(9), 977–1019. [Google Scholar]
  99. Saban, A. (2005). Çoklu zeka teorisi ve eğitim [Multiple intelligence theory and education]. (5.Baskı).Ankara: Nobel Yayın dağıtım. [Google Scholar]
  100. Saban, A. (2011). Çoklu zekâ kuramına göre geliştirilen örnek bilgisayar ve teknoloji destekli ders materyallerinin değerlendirilmesi. Ahmet Keleşoğlu Eğitim Fakültesi Dergisi, 31, 15-34. [Google Scholar]
  101. Shaughnessy, J. J., Zechmeister, E. B., & Zechmeister, J. S. (2016). Research methods in psychology.( Tenth Edition) Mc Graw-Hill Education, New York. [Google Scholar]
  102. Sias, C. M., Nadelson, L. S., Stephanie M. J., & Seifert, A. L. (2017). The best laid plans: Educational innovation in elementary teacher generated integrated STEM lesson plans, The Journal of Educational Research, 110, 3, 227-238, DOI: 10.1080/00220671.2016.1253539. [Google Scholar]
  103. Siew, M. N., Amir, N., & Chong, C.L. (2015). The perceptions of pre-service and in-service teachers regarding a project-based STEM approach to teaching science. Springer Plus, 4,8. doi:10.1186/2193-1801-4-8. [Google Scholar] [Crossref] 
  104. Sochacka, N. W., Guyotte, K. W., & Walther, J. (2016). Learning together: A collaborative autoethnographic exploration of STEAM-inspired education. International Journal of Engineering Education, 105(1), 15–42. [Google Scholar]
  105. Stearns, L. M., Morgan, J., Capraro, M. M., & Capraro, R. M. (2012). A Teacher observation ınstrument for pbl classroom ınstruction. Journal Of STEM Education: Innovations & Research, 13(3), 7-16. [Google Scholar]
  106. Stephen, M., Pugalee, M., Cline, J., & Cline, C. (2017). Lesson imaging in math and science: anticipating student ideas and questions for deeper stem learning. ASCD, Alexandria VA, USA.  [Google Scholar]
  107. Subramaniam, R., & Ning H. T. (2004) Pendulums swing into resonance. Physics Education, 39(5), 395. [Google Scholar]
  108. Suhonen,  J.  (2009).  Qualitative  and  mixed  method  research.  Scientific  Methodology  in  Computer Science-Fall, 1-13. [Google Scholar]
  109. Şahin, A., Ayar, M. C., & Adıgüzel, T. (2014). Fen, teknoloji, mühendislik ve matematik içerikli okulsonrası etkinlikler ve öğrenciler üzerindeki etkileri. Kuram ve Uygulamada Eğitim Bilimleri. 14(1), 1-26. [Google Scholar]
  110. Şentürk, C. (2017).  Science literacy in early childhood. Journal of Research & Method in Education, 7(1), 51-62. [Google Scholar]
  111. Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (Sixth edition). United States: Pearson Education. [Google Scholar]
  112. Tan, Ş. (2006). Öğretimi planlama ve değerlendirme. (10. Baskı). Ankara: Pegem A yayıncılık, Ankara. [Google Scholar]
  113. Uttal, D. H., & Cohen, C. A. (2012). Spatial thinking and STEM education: When, why, and how? In B. H. Ross (Ed.), The psychology of learning and motivation: Vol. 57. The psychology of learning and motivation (pp. 147-181). San Diego, CA, US: Elsevier Academic Press. http://dx.doi.org/10.1016/B978-0-12-394293-7.00004-2 [Google Scholar]
  114.  Van Rooij, S. W. (2009). Scaffolding project-based learning with the project management body of knowledge. Computers & Education, 52(1), 210–219. [Google Scholar]
  115. Vasquez, J. A., Sneider, C., & Comer, M. (2013). STEM Lesson Essentials. Heinemann, Portsmouth, NH. [Google Scholar]
  116. Yıldırım, A., & Şimşek, H. (2006). Sosyal bilimlerde nitel araştırma yöntemleri. (5. Baskı). Ankara: Seçkin Yayınları. [Google Scholar]
  117. Zians, A. W. (1997). A qualitative analysis of how experts use and interpret the kinetic school drawing technique. (Unpublished masters thesis).Toronto University, Kanada. [Google Scholar]
  118. Zubrowski, B. (2002). Integrating science into design technology projects: using a standard model in the design process. J. Technol Educ. 13(2), 48–67. [Google Scholar]