PEN Academic Publishing   |  ISSN: 1309-0682

Orjinal Araştırma Makalesi | Akdeniz Eğitim Araştırmaları Dergisi 2019, Cil. 13(27) 24-45

Ortaokul Matematik Öğretmenlerinin Alan Ölçme Konusundaki Anlamalarının İncelenmesi

S. Koza Çiftçi & İ. Elif Yetkin-Özdemir

ss. 24 - 45   |  DOI: https://doi.org/10.29329/mjer.2019.185.2   |  Makale No: MANU-1902-18-0002

Yayın tarihi: Mart 20, 2019  |   Okunma Sayısı: 83  |  İndirilme Sayısı: 209


Özet

Bu çalışmada, ortaokul matematik öğretmenlerinin alan ölçme konusuna ilişkin matematiksel anlamaları incelenmiştir. Nitel araştırma desenlerinden durum çalışması deseninin kullanıldığı çalışma, amaçlı örnekleme yöntemlerinden ölçüt örnekleme kullanılarak belirlenen gönüllü üç ortaokul matematik öğretmeniyle yürütülmüştür. Yarı-yapılandırılmış görüşme formuyla elde edilen veriler betimsel analiz kullanılarak incelenmiştir. Bulgular öğretmenlerin ölçme ve alan ölçme süreci, alan formülünün temelleri ve alan ölçme birimlerine ilişkin anlamalarında bazı sınırlıklar olduğunu göstermiştir. Öğretmenlerin genel olarak ölçme ve alan ölçme sürecini açıklamakta zorlandıkları, alan ölçmeye ilişkin bilgilerinin birime ilişkin anlamaları ile yakından ilişkili olduğu ve alan ölçme birimlerine ilişkin bilgilerinde önemli eksikliklerin olduğu görülmüştür.

Anahtar Kelimeler: Öğretmen bilgisi, alan kavramı, ölçme, alan ölçme, öğretmen eğitimi


Bu makaleye nasıl atıf yapılır?

APA 6th edition
Ciftci, S.K. & Yetkin-Ozdemir, I.E. (2019). Ortaokul Matematik Öğretmenlerinin Alan Ölçme Konusundaki Anlamalarının İncelenmesi . Akdeniz Eğitim Araştırmaları Dergisi, 13(27), 24-45. doi: 10.29329/mjer.2019.185.2

Harvard
Ciftci, S. and Yetkin-Ozdemir, I. (2019). Ortaokul Matematik Öğretmenlerinin Alan Ölçme Konusundaki Anlamalarının İncelenmesi . Akdeniz Eğitim Araştırmaları Dergisi, 13(27), pp. 24-45.

Chicago 16th edition
Ciftci, S. Koza and I. Elif Yetkin-Ozdemir (2019). "Ortaokul Matematik Öğretmenlerinin Alan Ölçme Konusundaki Anlamalarının İncelenmesi ". Akdeniz Eğitim Araştırmaları Dergisi 13 (27):24-45. doi:10.29329/mjer.2019.185.2.

Kaynakça
  1. An, S., Kulm, G., & Wu, Z. (2004). The pedagogical content knowledge of middle school, mathematics teachers in China and the US. Journal of Mathematics Teacher Education, 7(2), 145-172.  [Google Scholar]
  2. Ball, D. L. (1988). The subject matter preparation of prospective mathematics teachers: challenging the myths. East Lansing, MI: The National Center for Research on Teacher Education. [Google Scholar]
  3. Ball, D. L. (1990). The mathematical understandings that prospective teachers bring to teacher education. The Elementary School Journal, 90(4), 449-466.  [Google Scholar]
  4. Ball, D. L., & Cohen, D. K. (1999). Developing practice, developing practitioners: Toward a practice-based theory of professional education. In G. Sykes, & L. Darling-Hammond (Eds.), Teaching as the learning profession: Handbook of policy and practice (pp. 3-32). San Francisco: Jossey Bass. [Google Scholar]
  5. Ball, D. L., & Wilson, S. M. (1990). Knowing the subject and learning to teach it: Examining assumptions about becoming a mathematics teacher. (Research Report No. 90-7). East Lansing, MI: NCRTL, Michigan State University.  [Google Scholar]
  6. Ball, D. L., Hill, H. C., & Bass, H. (2005). Knowing mathematics for teaching: Who knows mathematics well enough to teach third grade, and how can we decide?. American Educator, 29(1), 14-17. [Google Scholar]
  7. Barrantes, M., & Blanco, L. J. (2006). A study of prospective primary teachers’ conceptions of teaching and learning school geometry. Journal of Mathematics Teacher Education, 9(5), 411-436. [Google Scholar]
  8. Baştürk, S. (2009). Ortaöğretim matematik öğretmen adaylarına göre fen-edebiyat fakültelerindeki alan eğitimi. İnönü Üniversitesi Eğitim Fakültesi Dergisi, 3(10), 137-160. [Google Scholar]
  9. Battista, M. T. (2003). Computer technologies and teaching geometry through problem solving. In F. K. Lester, Jr. (Ed.), Teaching mathematics through problem solving: Prekindergarten–grade 6 (pp. 229–238). Reston, VA: National Council of Teachers of Mathematics. [Google Scholar]
  10. Baturo, A., & Nason, R. (1996). Student teachers’ subject matter knowledge within the domain of area measurement. Educational Studies in Mathematics, 31(3), 235-268. [Google Scholar]
  11. Begle, E. G. (1979). Critical variables in mathematics education: findings from a survey of the empirical literature. Washington, DC: Mathematical Association of America and the National Council of Teachers of Mathematics. [Google Scholar]
  12. Best, j. W., & Kahn, J. V. (2005). Research in education, London: Pearson.  [Google Scholar]
  13. Blegen, M. B., & Kennedy, C. (2000). Principals and teachers, leading together. NASSP Bulletin, 84(616), 1-6. [Google Scholar]
  14. Bragg, P., & Outhred, L. (2000). Students’ knowledge of length units: do they know more than rules about rulers?. In Proceedings of the 24th Annual Conference of the International Group for the Psychology of Mathematics Education, edited by Tadeo Nakarahara and Masataka Koyama (Vol. 2, pp. 97-104). [Google Scholar]
  15. Brahier, D. J., & Schäffner, M. (2004). The Effects of a Study‐Group Process on the Implementation of Reform in Mathematics Education. School Science and Mathematics, 104(4), 170-178. [Google Scholar]
  16. Burmester, M., Wu, H. 2001. Some Lessons from California. Https://Math.Berkeley.Edu/~Wu/Pspd4c.Pdf  [Google Scholar]
  17. Bütün, M. (2005). İlköğretim matematik öğretmenlerinin alan eğitimi bilgilerinin nitelikleri üzerine bir çalışma. (Yayımlanmamış yüksek lisans tezi). Karadeniz Teknik Üniversitesi, Trabzon.  [Google Scholar]
  18. Casa, T. M., Spinelli, A. M., & Gavin, M. K. (2006). This about covers it! Strategies for finding area. Teaching Children Mathematics, 13(3), 168-173. [Google Scholar]
  19. Clements, D. H., & Battista, M. T. (1986). Geometry and geometric measurement. Arithmetic Teacher, 33(6), 29-32. [Google Scholar]
  20. Darling-Hammond, L., Hammerness, K., Grossman, P., Rust, F., & Shulman, L. (2005). The design of teacher education programs. In L. Darling-Hammond & J. Bransford (Eds.) Preparing teachers for a changing world: What teachers should learn and be able to do (pp. 390-441). NY: Jossey-Bass. [Google Scholar]
  21. Franke, M. L., Carpenter, T. P., Levi, L., & Fennema, E. (2001). Capturing teachers’ generative change: A follow-up study of professional development in mathematics. American Educational Research Journal, 38(3), 653-689. [Google Scholar]
  22. Goldsmith, L., & Schifter, D. (1997). Understanding teachers in transition: Characteristics of a model for developing teachers. In E. Fennema, & B. S. Nelson (Eds.), Mathematics teachers in transition (pp.19-54). Mahwah, NJ: Lawrence Erlbaum Associates. [Google Scholar]
  23. Grossman, P., Schoenfeld, A., & Lee, C. (2005). Teaching subject matter. In L. Darling-Hammond & J. Bransford (Eds.), Preparing teachers for a changing world (pp. 201-231).  [Google Scholar]
  24. Hiebert, J. (1981). Cognitive development and learning linear measurement. Journal for Research in Mathematics Education, 12(3), 197–211. [Google Scholar]
  25. Hiebert, J., Gallimore, R., & Stigler, J. W. (2002). A knowledge base for the teaching profession: What would it look like and how can we get one? Educational Researcher, 31(5), 3-15. [Google Scholar]
  26. Hill, H. C., Blunk, M. L., Charalambous, C. Y., Lewis, J. M., Phelps, G. C., Sleep, L., & Ball, D. L. (2008). Mathematical knowledge for teaching and the mathematical quality of instruction: An exploratory study. Cognition and Instruction, 26(4), 430-511. [Google Scholar]
  27. Hill, H. C., Rowan, B., & Ball, D. L. (2005). Effects of teachers’ mathematical knowledge for teaching on student achievement. American Educational Research Journal, 42(2), 371-406. [Google Scholar]
  28. Hill, H. C., Sleep, L., Lewis, J. M., & Ball, D. L. (2007). Assessing teachers’ mathematical knowledge: What knowledge matters and what evidence counts. Second Handbook of Research on Mathematics Teaching and Learning, 1, 111-155. [Google Scholar]
  29. Holm, J. (2014). Improving mathematics teaching through professional learning groups (Unpublished doctoral dissertation), Lakehead University, Thunder Bay, ON. [Google Scholar]
  30. Huang, C. C. (2006). The understanding of multiplication of preservice elementary school teachers in Taiwan. (Unpublished Doctoral Dissertation). University of Northern Colorado, [Google Scholar]
  31. Huang, H. M. E. (2014). Third-to fourth-grade students’ conceptions of multiplication and area measurement. ZDM, 46(3), 449-463. [Google Scholar]
  32. Huang, H. M. E., & Witz, K. G. (2013). Children conception of area measurement and their strategies for solving area measurent problems. Journal of Curriculum and Teaching, 2(1), 10-26. [Google Scholar]
  33. Işıksal, M. (2006). A study on pre-service elementary mathematics teachers’ subject matter knowledge and pedagogical content knowledge regarding the multiplicatıon and division of fractions (Unpublished doctoral dissertation), Middle East Technical University, Turkey.  [Google Scholar]
  34. Kajander, A. (2010). Mathematics teacher preparation in an era of curriculum change: The development of mathematics for teaching. Canadian Journal of Education, 33(1), 228-255  [Google Scholar]
  35. Kamii, C., & Kysh, J. (2006). The difficulty of "lenght x width": Is a square the unit of measurent?. Journnal of Mathematical Behaviour, 25, 105-115. [Google Scholar]
  36. Kılcan, S. (2006). İlköğretim matematik öğretmenlerinin kavramsal bilgileri: Kesirlerle bölme. (Yayınlanmamış Yüksek Lisans Tezi). Abant İzzet Baysal Üniversitesi, Bolu. [Google Scholar]
  37. Kordaki, M. (2003). The effect of tools of a computer microworld on students’ strategies regarding the concept of conservation of area. Educational Studies in Mathematics, 52(2), 177-209. [Google Scholar]
  38. Kutluk, B. (2011). İlköğretim matematik öğretmenlerinin örüntü kavramna ilişkin öğrenci güçlükleri bilgilerinin incelenmesi (Yayımlanmamış yüksek lisans tezi). Dokuz Eylül Üniversitesi, İzmir.  [Google Scholar]
  39. Leavitt, T. A. (2008). German mathematics teachers’ subject content and pedagogical content knowledge (Unpublished doctoral dissertation). University of Nevada, Las Vegas. [Google Scholar]
  40. Licwinko, S. E. (2014). Mathematics teachers’ understanding of and strategies addressing problematic elementary mathematıcs topics. (Unpublished Doctoral Dissertation). Columbia University. [Google Scholar]
  41. Lundin, J. C. (2007). Effects of mathematics content courses on content knowledge for teaching mathematics for elementary preservice teachers. (Unpublished Doctoral Dissertation). The University of Alabama [Google Scholar]
  42. Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers’ understanding of fundamental mathematics in China and the United States. Mahwah, NJ: Lawrence Erlbaum Associates. [Google Scholar]
  43. McMillan, J. S., & Schumacher, J. S. (2006). Research in education: A conceptual introduction. Massachusetts: Allyn & Bacon.  [Google Scholar]
  44. Merriam, S. B. (2002). Qualitative research in practice: Examples for discussion and analysis. San Francisco: Jossey-Bass Publishers [Google Scholar]
  45. Mewborn, D. (2001). Teachers content knowledge, teacher education, and their effects on the preparation of elementary teachers in the United States. Mathematics Teacher Education and Development, 3, 28-36. [Google Scholar]
  46. Mewborn, D. S. (2003). Teaching, teachers’ knowledge, and their professional development. In J. Kilpatrick, W. G. Martin, & D. Schifter (Eds.), A research companion to principles and standards for school mathematics (pp. 45–52). Reston: National Council of Teachers of Mathematics. [Google Scholar]
  47. Monk, D. H. (1994). Subject area preparation of secondary mathematics and science teachers and student achievement. Economics of Education Review, 13, 125-145 [Google Scholar]
  48. National Research Council. (2001). Adding it up: Helping children learn mathematics. (Edited by J. Kilpartrick, J. Swafford, & B. Findell). Washington: National Academy Press. [Google Scholar]
  49. Neuman, W. L. (2007). Basics of social research: Quantitative and qualitative approaches. Boston: Allyn and Bacon [Google Scholar]
  50. Nitabach, E. and Lehrer, R. (1996). Developing spatial sense through area measurement. Teaching Children Mathematics, 2, 473-476.  [Google Scholar]
  51. O’Keefe, M., & Bobis, J. (2008). Primary teachers’ perceptions of their knowledge and understanding of measurement. In M. Goss, R. Brown, & K. Makar (Eds), Navigating currents a directions (pp. 391-398). Brisbane, OLD: MERGA. [Google Scholar]
  52. Outhred, L., & McPhail, D. (2000). A framework for teaching early measurement. In J. Bana, & A. Chapman (Eds.), Mathematics education beyond (pp. 487-494). Perth: Mathematics Education Research Group of Australasia Incorporated. [Google Scholar]
  53. Outhred, L., & Mitchelmore, M. (2004). Students’ Structuring of Rectangular Arrays. International Group for the Psychology of Mathematics Education. [Google Scholar]
  54. Padinjarekkara, J. (2007). Elementary mathematics teaching in İndia's Jharkhand: mathematical knowledge and social status. (Unpublished Doctoral Dissertation). Marquette University. [Google Scholar]
  55. Price, J. & Ball, D. L. (1997). There’s always another agenda: Marshalling resources for mathematics reform. Journal of Curriculum Studies, 29, 637-666. [Google Scholar]
  56. Rowan, B., Correnti, R., & Miller, R. (2002). What large-scale survey research tells us about teacher effects on student achievement: insights from the prospects study of elementary schools. The Teachers College Record, 104(8), 1525-1567. [Google Scholar]
  57. Schifter, D., & Simon, M. A. (1992). Assessing teachers’ development of a constructivist view of mathematics learning. Teaching and Teacher Education, 8(2), 187-197. [Google Scholar]
  58. Shahbari, J. A. (2017). Mathematical and Pedagogical Knowledge amongst First-and Second-Grade In-service and Pre-service Mathematics Teachers. International Journal for Mathematics Teaching & Learning, 18(1).  [Google Scholar]
  59. Sherin, M. G. (2000). Viewing teaching on videotape. Educational Leadership, 57(8), 36-38 [Google Scholar]
  60. Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14. [Google Scholar]
  61. Simon, M. A., & Blume, G. W. (1994). Mathematical modeling as a component of understanding ratio-as-measure: A study of prospective elementary teachers. The Journal of Mathematical Behavior, 13(2), 183-197. [Google Scholar]
  62. Smith III, J. P., Males, L. M., & Gonulates, F. (2016). Conceptual limitations in curricular presentations of area measurement: One nation’s challenges. Mathematical Thinking and Learning, 18(4), 239-270. [Google Scholar]
  63. Sowder, J. (2007). The mathematical education and development of teachers. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 157-223). Reston, VA: Information Age. [Google Scholar]
  64. Sowder, J., Armstrong, B., Lamon, S., Simon, M., Sowder, L., & Thompson, A. (1998). Educating teachers to teach multiplicative structures in the middle grades. Journal of Mathematics Teacher Education, 1(2), 127-155. [Google Scholar]
  65. Stein, M. K., & Brown, C. A. (1997). Teacher learning in a social context: Integrating collaborative and institutional processes with the study of teacher change. In E. Fennema & B. S. Nelson (Eds.), Mathematics teachers in transition (pp. 155-191). Mahwah, JN: Lawrence Erlbaum Associates. [Google Scholar]
  66. Stein, M. K., Baxter, J. A., & Leinhardt, G. (1990). Subject-matter knowledge and elementary instruction: A case from functions and graphing. American Educational Research Journal, 27(4), 639-663. [Google Scholar]
  67. Stephan, M., & Clements, D. H. (2003). Linear and area measurement in prekindergarten to grade 2. Learning and teaching measurement, 3-16. [Google Scholar]
  68. Strutchens, M. E., Harris, K. A., & Martin, W. G. (2001). Assessing geometric and measurement understanding using manipulatives. Mathematics Teaching in the Middle School, 6(7), 402-405. [Google Scholar]
  69. Sullivan, P. (2004). Some ways of knowing mathematics and some implications for teacher education (editorial). Journal of Mathematics Teacher Education, 7(4), 295–298. [Google Scholar]
  70. Tipps, S., Johnson, A., & Kennedy, L. M. (2011). Guiding children’s learning of mathematics. Cengage Learning. [Google Scholar]
  71. Türnüklü, E., & Yeşildere, S. (2007). The pedagogical content knowledge in mathematics: Preservice primary mathematics teachers’ perspectives in Turkey. Undergraduate Mathematics Preparation of School Teachers: The Journal, 1, 1-13. [Google Scholar]
  72. Van de Walle, J. A., Karp, K. S., & Bay-Williams, J. M. (2010). Elementary and middle school mathematics: Teaching developmentally. New York, NY: Pearson. [Google Scholar]
  73. Wayne, A. J., & Youngs, P. (2003). Teacher characteristics and student achievement gains: A review. Review of Educational Research, 73(1), 89-122. [Google Scholar]
  74. Wenglinsky, H. (2002). The link between teacher classroom practices and student academic performance. Education Policy Analysis Archives, 10(12), 1-30. [Google Scholar]
  75. Wilson, S. M., Floden, R. E., & Ferrini-Mundy, J. (2001). Teacher preparation research: Current knowledge, gaps, and recommendations. Seattle: Center for the Study of Teaching and Policy, University of Washington. [Google Scholar]